

Attacking The Internet of
Things

(using time)

Paul McMillan

Who am I?

There are many ways
to attack the

Internet of Things

Demo
(start)

What is a timing attack?

def authenticate_user(user, pass):
stored_hash=get_password_hash(user):
if stored_hash:

test_hash = sha1(password)
if test_hash == stored_hash:

Return True
Else:

Return False

Many Kinds
● User Enumeration

● Blind SQL Injection

● CPU Cache attacks against crypto

– Local

– Cross-VM

● Lucky 13

● Many more...

String Comparison
Timing Attacks

memcmp
while (len != 0)
 {
 a0 = ((byte *) srcp1)[0];
 b0 = ((byte *) srcp2)[0];
 srcp1 += 1;
 srcp2 += 1;
 res = a0 - b0;
 if (res != 0)
 return res;
 len -= 1;
 }

http://www.nongnu.org/avr-libc/

MASSIVE Speedup

c = character set
n = Length of string

Brute Force: c^n
Timing Attack: c * n (* x)
(x is # tries to distinguish)

Why are they interesting?

What are the drawbacks?

Let's talk about time

Internet SF-NY 70ms
Spinning Disk 13ms

Ram Latency 83ns
L1 cache 1ns

1 cpu cycle ~0.33ns

http://duartes.org/gustavo/blog/post/what-your-computer-does-while-you-wait/
http://duartes.org/gustavo/blog/post/what-your-computer-does-while-you-wait/

Speed of light
in network cable

1 meter in ~5ns
200 meters ~1µs

So... how long does each
byte of that string
comparison take?

nanoseconds

(on a modern
3Ghz machine)

What about something a
little slower?

Network timing precision

Sources of Imprecision

●Graphics drivers
●Background networking
●USB Devices
●Power saving measures
●Audio devices
●Etc.

Software Timestamps
are noisy.

Let's use hardware!

(picture of i350 + adapter)

Data Collection

●Generate repeated traffic
●TCPdump the packets
●Analyze the data
●Feed back to traffic gen

Making things work
● Libpcap 1.5.0+

● TCPDump 4.6.0+ (released July 2, 2014)

● Recent-ish Kernel

Compile these from source.

In theory, this might work on OSX?

It works on Ubuntu 14.04 for me.

Nanoseconds. Ugh!
● Scapy doesn't read the pcap files

● Neither do most other packages

● Wireshark does!

● Nanosecond timestamps lose precision if you
convert them to a float()

● So we subtract a large offset, and don't work with
raw timestamps.

● Use integer Nanoseconds rather than float seconds

What is the Hue API?
● GET /api/<user token>/lights

● Basic RESTful API

● Not very smart - always returns http status 200
even when returning errors.

● User token is the only required auth

(no username, no sessions)

● Not very fast (can handle ~30req/s)

Hue Base Oddities
● Running FreeRTOS/6.0.5

● Network stack is dumber than a sack of rocks

● SSDP implementation ignores most parameters

● Each HTTP response is split into ~8 pieces

● HTTP stack ignores most incoming headers

● Ethernet Frame Check Sequence sometimes
wrong

● Noisy: Broadcasts SSDP, ARPs for OpenDNS

Statistics!

Basic Review
● What is the Null Hypothesis?

● What does it mean to reject the null hypothesis?

● What are we fundamentally trying to do here?

– We're sorting samples into groups, and trying to
identify the outlier

More Stats
● Why can't we use the t-test?

● What is the K-S test, and why does it help us
here?

● What other approaches might we use?

[a series of yet to be
completed example data

graphs]

Data Prep
● Discarding data (2 standard deviations above

the mean?)

● How to do that wrong!

● Why?

● [graph of prepped data]

Code
● In the repo now, public after the talk:

https://github.com/PaulMcMillan/2014_defcon_timing

● 3 separate but related scripts

● Don't forget to save your data for re-analysis

● Starting points for analysis, not full blown attack
tools

[brief browse through the
code]

[Demo discussion,
dissection of working or

failure. Draw some
graphs]

Tips and Tricks

Keep the socket open
(if you can)

Configure your network
card parameters properly

●use hardware timestamps
●turn off queues
●use nanosecond
timestamps (gah!)

●Turn off some offloads

Make everything Quiet
● reduce extraneous traffic to the device

● Slow loris to exclude other traffic

● don't run extra stuff on your attack machine

● Profile your victim – discard noisy periods

Do a warmup run before
starting to collect data!

Find the simplest possible
request

Avoid statistical tests that
assume your data is

normal

Gather data on all
hypothesis concurrently

Randomize the request
order

Don't overwhelm the
device

Don't forget you can stop
and brute force a token

Some code short circuits if
strings aren't the same

length.

Try both:
Fast and Noisy
Slow and Quiet

Which one works best will
vary.

Don't get fooled by your
own data!

When in doubt, take more
samples.

Questions?
http://github.com/

PaulMcMillan/
2014_defcon_timing

Repo contains updated
slides and a copy of many

useful references.

Attacking The Internet of
Things

(using time)

Paul McMillan

Are my presenter notes showing up properly?

Who am I?

Paul McMillan
Security Engineer at Nebula (I build clouds)
Security team for several prominent open source
projects (not as exciting as you think it is)
Developer outreach
Mostly Python
Like building distributed systems
Like taking theoretical vulnerabilities and making
them practical

There are many ways
to attack the

Internet of Things

You generally own the device, so physical attacks all
work:

Take it apart, read the flash memory
Disassemble the firmware from the manufacturer
Exploit shitty embedded C
Fuzzing
Logic errors
RF

Most of the standard network security errors are
present too:

Random open ports
Old and vulnerable OS/application code
Etc.

We could go on forever. However,

We're here to talk about timing attacks.

Demo
(start)

This is a Philips Hue base station. That's a zigbee
connected light. I figured they're a pretty good
example from the “internet of things that are put on
the internet for no good reason”

What is a timing attack?

What is a timing attack, anyway?

Well, at the most basic level, asking the computer to
do any operation takes time. A measurable amount
of time. A timing attack exploits this.

An attacker uses timing measurements to test
hypotheses:

def authenticate_user(user, pass):
stored_hash=get_password_hash(user):
if stored_hash:

test_hash = sha1(password)
if test_hash == stored_hash:

Return True
Else:

Return False

This is a pretty typical example of how user
authentication works (yes, I know, it has problems, I
left stuff out to keep this simple)

<talk through the code>

You'll notice that if it finds a user, it does some extra
work. In this case, that work involves calculating the
sha1 of the provided password. That's an expensive
operation.

An attacker can exploit this code to figure out which
users have accounts in the system. Obviously, this
isn't a vulnerability in all systems (some publish that
data), but it's an unintended behavior.

Many Kinds
● User Enumeration

● Blind SQL Injection

● CPU Cache attacks against crypto

– Local

– Cross-VM

● Lucky 13

● Many more...

The point here is that these all follow a common
pattern:

The attacker makes a guess about something
The computer uses that to compute
The attacker observes how long that takes (over

many samples) and infers whether their hypothesis
was correct

String Comparison
Timing Attacks

However, today we're here to talk about string
comparison timing attacks.

These are often more difficult to exploit, and usually
written off as completely hypothetical vulnerabilities

(Hopefully my demo today will help fix that
misconception)

memcmp
while (len != 0)
 {
 a0 = ((byte *) srcp1)[0];
 b0 = ((byte *) srcp2)[0];
 srcp1 += 1;
 srcp2 += 1;
 res = a0 - b0;
 if (res != 0)
 return res;
 len -= 1;
 }

Snippet from http://www.nongnu.org/avr-libc/

<talk through the snippet>

The key takeaway here is that it stops as soon as it
finds 2 non-matching bytes.

Unlike the previous example, we don't have to guess
an entire username at once to get our timing
difference. Instead, we just have to guess the first
character.

MASSIVE Speedup

c = character set
n = Length of string

Brute Force: c^n
Timing Attack: c * n (* x)
(x is # tries to distinguish)

If we're brute forcing an 8 character password with
16 possible characters (I like hex), we have to try a
total of 4.2 billion guesses. That's likely to be
impractical in the real world.

On the other hand, if we're conducting a timing
attack, and let's say it takes us 10000 guesses per
character to determine a timing difference, that works
out to about 1.2 million.

If you bump the length up to 10, you're looking at a
trillion for brute force, and just 1.6 million for the
timing attack.

Obviously, this is a worthwhile attack, if you can pull
it off.

Why are they interesting?

What are the drawbacks?

Why are they interesting?
 - They're more "pick the lock on the front door" than
"find a backdoor"
 - They don't require "bad code" (just non-security
mindful code)
 - Most people don't list them among "practical"
exploits
 - Commonly overlooked
What are the drawbacks?
 - lots of network traffic
 - really time consuming
 - work best on a slow devices
 - Susceptible to network noise / device contention

Let's talk about time

It's hard to get an intuitive grasp on small amounts of
time.

Let's look at some examples.

Internet SF-NY 70ms
Spinning Disk 13ms

Ram Latency 83ns
L1 cache 1ns

1 cpu cycle ~0.33ns

Numbers more or less from here:
http://duartes.org/gustavo/blog/post/what-your-compu
ter-does-while-you-wait/

Speed of light
in network cable

1 meter in ~5ns
200 meters ~1µs

Remember that 1 microsecond is the minimum
resolution recorded by the default kernel timestamps.

So... how long does each
byte of that string
comparison take?

nanoseconds

(on a modern
3Ghz machine)

And that's the catch, Ladies and Gentlemen...

What about something a
little slower?

120 Mhz STM32 processor
Zigbee to the lights
10 base T network port

The perfect device to demonstrate string comparison
timing attacks.

The comparison is still going to take nanoseconds,
but it's going to take quite a lot of them.

Image from the Philips press kit

Network timing precision

It turns out, if you want timing measurements good to
the millisecond, or so, you're set. The kernel's
networking stack works fine.

However, since the effects we're looking for are
much smaller than that, we need to work harder.

Sources of Imprecision

●Graphics drivers
●Background networking
●USB Devices
●Power saving measures
●Audio devices
●Etc.

For a first try, it makes sense to just try the basic,
default kernel packet timestamping. It turns out, it's
really noisy.

Software Timestamps
are noisy.

Let's use hardware!

It turns out this is easier now than when I started
working on this a year ago. Linux support for
hardware timestamps works out of the box in recent
distros.

Most of the results we're going to discuss in the rest
of the talk CAN be obtained without hardware
timestamp support. You just need many many more
samples.

Try and find a NIC with hardware support – they're
pretty common now. Hardware with support for PTP
(IEEE 1588) usually works.

(picture of i350 + adapter)

Since my laptop hardware doesn't seem to support
hardware timestamps, I went looking for a high-
quality source. It's always better to start with great
hardware and work your way down, than to start with
bad hardware and realize you need better.

This is the Intel i350 NIC, which supports hardware
timestamping with an 8ns resolution (the datasheet
claims). It's connected through an expresscard to
PCIe adapter, allowing me to run it from my laptop.

It is directly connected to the Hue Base Station,
since we don't want extra hardware introducing
unpredictable latency, especially for a live demo.

This is what we're doing the demo with right now.

Data Collection

●Generate repeated traffic
●TCPdump the packets
●Analyze the data
●Feed back to traffic gen

So we have our target, we have the hardware which
will allow us to carefully measure it, and we have our
chosen attack technique. What's next?

Three fairly simple scripts. The first just generates
login attempts over and over again. It takes an
existing guess at the token, and appends a random
character, then fires off the network request.

While it's doing this, a second script makes sure that
TCPDump is capturing all relevant traffic, using
hardware timstamps, at nanosecond level detail.

A third script periodically analyzes all captured data
up to this point, and determines whether to advance
the generator to a new guess.

Making things work
● Libpcap 1.5.0+

● TCPDump 4.6.0+ (released July 2, 2014)

● Recent-ish Kernel

Compile these from source.

In theory, this might work on OSX?

It works on Ubuntu 14.04 for me.

I'm going to take a slight diversion now and explain
the practical steps to get nanosecond level hardware
timestamps out of tcpdump.

Until very recently, tcpdump only supported
microsecond level timestamps. Libpcap added
support a while ago, but tcpdump didn't add it until a
couple months ago. Hardware timestamp support is
also relatively new. The upshot of all this is you need
to install tcpdump 4.6.0 and libpcap 1.5.0+.

Nanoseconds. Ugh!
● Scapy doesn't read the pcap files

● Neither do most other packages

● Wireshark does!

● Nanosecond timestamps lose precision if you
convert them to a float()

● So we subtract a large offset, and don't work with
raw timestamps.

● Use integer Nanoseconds rather than float seconds

Nanosecond timestamps turn out to be inconvenient
to work with.

For starters, very few things understand the new file
format (this will get fixed soon I hope).

Wireshark does understand pcap files with
nansecond captures, and so we use tshark as our
disector to analyse our capture file. This isn't very
efficient.

If you float() a nanosecond capture, you lose the last
couple digits. To avoid imprecision and mistakes
here, we prefer to work only in integers, and subtract
a large offset to avoid overflows.

What is the Hue API?
● GET /api/<user token>/lights

● Basic RESTful API

● Not very smart - always returns http status 200
even when returning errors.

● User token is the only required auth

(no username, no sessions)

● Not very fast (can handle ~30req/s)

Hue Base Oddities
● Running FreeRTOS/6.0.5

● Network stack is dumber than a sack of rocks

● SSDP implementation ignores most parameters

● Each HTTP response is split into ~8 pieces

● HTTP stack ignores most incoming headers

● Ethernet Frame Check Sequence sometimes
wrong

● Noisy: Broadcasts SSDP, ARPs for OpenDNS

Statistics!

(Groan) but don't worry, we're only going to cover
what you need to know

Basic Review
● What is the Null Hypothesis?

● What does it mean to reject the null hypothesis?

● What are we fundamentally trying to do here?

– We're sorting samples into groups, and trying to
identify the outlier

More Stats
● Why can't we use the t-test?

● What is the K-S test, and why does it help us
here?

● What other approaches might we use?

[a series of yet to be
completed example data

graphs]

Data Prep
● Discarding data (2 standard deviations above

the mean?)

● How to do that wrong!

● Why?

● [graph of prepped data]

Don't forget that these stats only work if your data
points are approximately aligned in time, and you
have the SAME NUMBER OF THEM!

This doesn't work at all with lopsided data sets. It's
easy to accidentally get there.

Code
● In the repo now, public after the talk:

https://github.com/PaulMcMillan/2014_defcon_timing

● 3 separate but related scripts

● Don't forget to save your data for re-analysis

● Starting points for analysis, not full blown attack
tools

[brief browse through the
code]

[Demo discussion,
dissection of working or

failure. Draw some
graphs]

Tips and Tricks

These are going to come fairly rapid-fire, but most of
them represent at least an afternoon of learning
associated with failure.

Keep the socket open
(if you can)

Configure your network
card parameters properly

●use hardware timestamps
●turn off queues
●use nanosecond
timestamps (gah!)

●Turn off some offloads

Make everything Quiet
● reduce extraneous traffic to the device

● Slow loris to exclude other traffic

● don't run extra stuff on your attack machine

● Profile your victim – discard noisy periods

Do a warmup run before
starting to collect data!

Yes, physical warmup

Find the simplest possible
request

Avoid statistical tests that
assume your data is

normal

Gather data on all
hypothesis concurrently

You really can't come back later and mix them up.

Randomize the request
order

Don't cycle repeatedly. You're more likely to hit cache
and cyclical timing weirdness.

Don't overwhelm the
device

Don't forget you can stop
and brute force a token

Some code short circuits if
strings aren't the same

length.

Try both:
Fast and Noisy
Slow and Quiet

Which one works best will
vary.

Don't get fooled by your
own data!

When in doubt, take more
samples.

Questions?
http://github.com/

PaulMcMillan/
2014_defcon_timing

Repo contains updated
slides and a copy of many

useful references.

