USB for All!!1

You should be looking at USB.
Yes, you.




Introduction

* Who We Are
Jesse Michael
Mickey Shkatov
* What We Do
Break things
Cry about the current level of security research focused on USB

DISCLAIMER: The views and opinions expressed in this
presentation are those of the authors and not their employer.




Purpose of this talk




Purpose of this talk

* We want to demonstrate to attendees how easy it is to get
started at performing their own USB security research and
help them understand why they should undertake this
challenge.




Why care about USB?

* We believe that even though USB is a pervasive technology in
modern computing platforms, current security research has
still only scratched its surface.

* USB has some interesting capabilities and is currently being
used in a wide array of lesser-known usage models that can
result in security problems.




Getting started

http://www.usb.org/developers/docs/

At over 600 pages, the USB specification can be a little intimidating...




Getting started

The physical, link, and protocol layers are mostly handled in hardware...




Getting started

These areas are the easiest place to get started and find vulnerabilities so we’ll
focus here and on some bigger picture views of how USB devices are used in
modern platforms.




USB Basics

USB versions
1.0,1.1,2.0,3.0,3.1

Speeds
Low Speed, Full Speed, High Speed, Super
Speed Genl and Gen2

Device classes

HID, Mass Storage, Image, Video, Audio,
Communications, Vendor Defined

Physical connections
1.x/2.0
D+, D-, Vbus, Gnd
3.0+
Added SSTx+, SSTx-, SSRx+, SSRx-




Do I need to touch it?

Most people think about USB like this...




Do I need to touch it?

...but almost all modern laptops have internal USB devices.

Which often contain their own processors with firmware
and are separate from the host CPU and operating system.

What could go wrong?




There's firmware in my USB?

Even “simple” USB devices can have interesting complexity

As an example, here’s a sync cable for an older phone...




There’s firmware in my USB?

That contains a USB to
UART bridge chip that
looks like this internally...

8052 processor
10K Boot ROM
16K RAM
2K SRAM

Loads firmware from I2C




There's firmware in my USB?

And the datasheet describes how to run your own code in it...

Arbitrary code execution inside your phone sync cable? Really?




Device Firmware Upgrade

http://www.usb.org/developers/devclass docs/usbdfulQ.pdf

There’s actually a specification for how to create USB devices
with upgradable firmware.

It doesn’t mention security at all. And most devices that
implement this capability don’t bother to do any validation of
the firmware image other than basic checksums which are easy
to bypass.

DFU and similar custom device upgrade methods are a good
way to easily get arbitrary code execution within a USB device.

What can we do with that?




Debug Capability
* Allows low-level debug over USB

* Now required to gain Windows Logo certification

“If the XHCI controller in the SUT has any user-
accessible ports, the controller must have debug
capability.”




Attack Surfaces

So instead of looking at it like this...

USB cable




Attack Surfaces

There’s actually a lot more going on...

Firmware
VMM

USB cable Processor

BIOS/SMM
USB PHY

CPU

USB PHY




Attack Surfaces

All of this is probably happening inside your laptop right now.

Firmware

Processor

BIOS/SMM

USB PHY
CPU

USB PHY




Attack Surfaces

Some USB devices even have radio interfaces...

BIOS/SMM

CPU

USB PHY

Firmware

Processor

USB PHY




Attack Surfaces

If you can get arbitrary code execution within the USB device...

-_—

/'

L[ZKX
s

=

)—

USB PHY

b 4

USB PHY




Attack Surfaces

It can be used to attack components within the host.

i
%

«——USB traces— > It Yels

USB PHY

USB PHY




Attack Surfaces

Even with attacks originating from the host, these can cross
privilege boundaries

\
-
1‘\

u N
= Firmware
———USBJraces— > It Yels
‘ BIOS/SMM
USB PHY
< 4

- 4




Tools!




Total Phase Beagle 5000

http://www.totalphase.com/protocols/usb/

Supports USB 3.0 SuperSpeed, but very expensive. Can only be used for
observation and not injection.




Total Phase Beagle 480

http://www.totalphase.com/protocols/usb/

Less expensive than Beagle 5000, but only supports USB 2.0. Can only be
used for observation and not injection.




ITIC 1480A USB 2.0 Protocol
Analyzer

http://www.internationaltestinstruments.com/products/97-1480a-usb-20-
protocol-analyzer.aspx

HW less expensive than Beagle 480, but some SW modules sold separately.
Can only be used for observation and not injection.




Facedancer

http://goodfet.sourceforge.net/

Open source, cheap and easy to build, allows arbitrary emulation of USB
endpoints, but can be very slow




Daisho

https://github.com/mossmann/daisho

Open source, intended to support full USB 3.0 SuperSpeed monitoring and
injection, but still in development




BeagleBone Black + USBProxy

https://github.com/dominicgs/USBProxy

Open source project to create a USB 2.0 MitM device using the BeagleBone Black,
still in early stages, but already useful




Peach Publishers

Data Publisher
Configuration Publisher

This uses libUsbDotNet which hasn’t been maintained in a
while, so it has its bugs, but has been useful for finding issues.

Submitted to Peach maintainers as well as available on the
DEFCON CD.




libusb

e http://www.libusb.org/

* Libusb is a good way to get started with writing tools to access
USB devices




Demos!




Summary

USB is a pervasive technology in modern computing devices.

Not just external ports which require physical access to attack

Devices connected over USB run upgradable firmware

Debug capability required for Windows certification

Interesting attack scenarios with internal devices

USB provides a rich set of capabilities and is being used in a
variety of configurations that could result in security
vulnerabilities and it’s easier than people think to get started
looking at this stuff.




Questions?




