Abusing NoSQL
Databases

Ming Chow
Email: mchow@cs.tufts.edu

Twitter: @tufts _cs_mchow




Why Care?

e That was then: a few SQL database options
for any application

e This is now: a plethora of database options,
you have to choose the right database for
the right job

e Many NoSQL databases are built for
performance, scalability, and flexibility

e Security of NoSQL databases? Weak,
Inconsistent, the wild wild west



Why Am | Here?

e | talked on abusing HTMLS5 back at DEF

CON 19
e Bryan Sullivan scratched the surface with his

BlackHat 2011 work "Server-Side JavaScript
Injection”
e The rise of client and server-side JavaScript
e There is a lot to just the database side of

things



Straight Out-of-the-Box General

Issues: The Defaults

e Easy win: know the database vendor, IP
address, and an open port number. The

default open port numbers:
o Mongo: 27017, 28017, 27080
CouchDB: 5984

Hbase: 9000

Cassandra: 9160

Neodj. 7474

Redis: 6379

Riak: 8098

O O O O O O



Straight Out-of-the-Box General Issues:

Authentication and Encryption

e (Almost) No NoSQL database enables an

administrator user or authentication by default
o Even if users are enabled, weak password
storage
m Mongo uses mdd
m Plaintext for Redis
m \Weak salt or plaintext for CouchDB

e Client communicates with server via plaintext

e Database encryption and auditing features are
generally not available

e Emphasis on "trusted environments”



New Classes of Injection Attacks

1. Schema: inserting a record into a schema
that does not exist will automatically create
the new schema

2. Query: creating unsafe queries via string
concatentation

3. JavaScript: db.eval (), Swhere clause
take in JavaScript functions as parameters



A Heterogeneous Problem

e RTFM for each database system

e Different for each system:

o Terminologies and analogies

o Methods of granting permissions and user control

o Flavors of query types, including: Cassandra Query
Language (CQL), command-based queries,
JavaScript

o Flavors of query results, including: JSON, BSON
(Binary JSON)



Vendor-Specific ltems

e MongoDB:

o The run () command can act as a shell
o Easy information gathering by simply looking at the
startup loginthe local collection (shows pid,

OS details, paths)
o mongosniff tool comes with mongo installation for

"tracing/sniffing view into database activity in real
time"
e CouchDB:
o HTTP document REST API exposed by default



Old Security Matters

e Defense in depth and perhaps, even more
costly

e Architecturing becomes more important:
o Since many NoSQL databases have weak security,
more controls may be necessary
e \alidation becomes even more important

o No longer are we just validating input strings but also
results and JavaScript functions



ILMERELCEWEVE

O

. No longer a one-size-fits-all game

Plenty of new attack vectors, contrary to the
idea that SQL injection is practically gone
thus eliminating many concerns
Technologies being deployed naively

The reports of the death of database
administrators are greatly exaggerated



References

e Chow, M. "JavaScript Pitfalls" SOURCE Boston Conference 2013

e Okman et al "Security Issues in NoSQL Databases" http://jmiller.uaa.
alaska.edu/cse465-fall2012/papers/okman2011.pdf

e Sullivan, B. "Server-Side JavaScript Injection” Black Hat USA 2011 http:
//media.blackhat.com/bh-us-
11/Sullivan/BH_US_11_Sullivan_Server Side WP.pdf

e Urbinsky, W. "NoSQL, No Security?" AppSec USA 2012, Austin, Texas.
http://www.slideshare.net/wurbanski/nosql-no-security

e http://www.slideshare.net/gavinholt/no-sql-no-security-20074309

e http://blogs.adobe.com/asset/files/2011/04/NoSQL-But-Even-Less-
Security.pdf

e http://blog.astyran.sg/2011/11/there-is-no-security-in-nosql.html

e http://www.darkreading.com/database/does-nosql-mean-no-
security/232400214

e https://securosis.com/blog/nosqgl-and-no-security

e http://blog.spiderlabs.com/2013/03/mongodb-security-weaknesses-in-a-
typical-nosql-database.html



