EDS: Exploitation Detection System

By Amr Thabet
Q-CERT




About The Author

Amr Thabet (@Amr_Thabet)
Malware Researcher at Q-CERT

The Author of:

= Security Research and Development
Framework (SRDF)

= Pokas x86 Emulator

Wrote a Malware Analysis Paper for
Stuxnet

Company Logo



Introduction

Now the APT Attack become the major
threat

Bypasses all defenses
Standards and Policies doesn’t work
Bypasses IDS, IPS, Firewalls .. etc

Company Logo



Introduction

The Attacker uses:

= Client-side attacks and exploits

= Spear-phishing attacks

Uses undetectable malwares
Uses HTTP and HTTPs

Attack the servers from the infected
clients

Company Logo



Introduction

The Next Security Technology is the :
“Exploitation Detection Systems”

EDS is only way to stop Attacks from
behind

Stop Attacks from Client-Side
Stop successful exploitation for a 0-day

Company Logo



Improvements in Defense

C
Firewall
Security
Technology

Improvements

Company Logo



Introduction

The Talk today is about:

= EDS as a concept and next technology
= EDS: the new tool that | created

* The Development of EDS

= SRDF Framework (adv © )

| will try to explain everything for who
don’t know about Exploits ... etc

Company Logo



Contents

(0 Motivation and Goals

C The Design of EDS
@) Mitigations in Depth
‘ Monitoring System

‘ Development and Future work

Company Logo



Stop Exploitation for new 0-days

Works with Memory Corruption
Exploits

Detect Compromised Processes

Prevent and/or Alert of Exploited
Processes

Company Logo



Memory Corruption Vulnerabilities

Simply write data in —

places you are not w |
intended to write on it |= .

Like: .

= Pointers e—

= Return addresses . — _
Change how the o
application behave w;m
Check: |

rrrrrrrrrr

Company Logo




Antivirus vs EDS

EDS is not signature based

EDS doesn’t detect malware

EDS main goal to stop exploitation
EDS is memory based

EDS searches for evidence of Memory
corruption and indication of
compromise

Company Logo



Compile-Time Solutions:
= Takes Long time to affect
= Always there’s exceptions

Current Run-time Solutions:

= Only One Layer of Defense

= On-Off Mitigations

= No detection of this layer was bypassed or not

= A fight between false positives and false
negatives

Company Logo



What’s New?

Co-operative Mitigations
Based on Scoring System

Prevention and Alerting Infected
processes

Additional layer with Monitoring
System

Company Logo



Design of EDS

Shellcode Detector

ROP Chain Detector

Security Mitigations For
Stack

Security Mitigation For
Heap

Scoring System For Alerting and/or Prevention

Periodical Scanning and Monitoring System
Searching for Evidences of Exploitation

Company Logo




Design of EDS

Payload Detection:

= Shellcode Detection

= ROP Chain Detection

Security Mitigations For Stack:
= ROP Detection

Security Mitigation For Heap:

= Heap Overflow

= Heap Spray

= Use After Free

Company Logo



Design of EDS

Scoring System:

= Based On Payload Detection and Security
Mitigations

= Scoring Based on Payload, Attack Vector and
The Process abnormal behavior

Process Related

Payload Exploitation Attack Vector factors

Company Logo



Design of EDS

Monitoring System:

= Searches for Evidence of Exploitation
= Detect bypassed Mitigations

= Alert the Administrators to Take Action

= Looking at the previous EDS reports for this
process

Company Logo



Mitigation In Depth: Payload

Increase the score of suspiciously

Detect suspicious inputs and tries for
exploitation.

Divided Into:

= Shellcode Detection
= ROP Chain Detection

Company Logo



What’s Shellcode?

It is simply a portable native code
Sent as a bunch of bytes in a user input

Do a specific action when the
processor executes it

The attacker modify the return address
to point to it.

Company Logo



What’s Shellcode?

It gets its place in memory

Then it gets the kernel32
DLL place in memory

Shellcode Skeleton

Getting Delta
G et Wi n d OWS fu n Ctio ns Getting Kernel32 Imagebase
(APIS) from it Getting APIs
And then ... ATTACK Payioac

Check:

Company Logo



What’s Shellcode

Some shellcodes shouldn’t have null
bytes (sent as string)

Some are encrypted
There’s a loop to decrypt it
Some are in ascii

Some doesn’t include loop but many
pushes (to be in ascii)

Company Logo



Shellcode Detection

Goals:

= Very fast shellcode detector

= Very hard to bypass ... min false negative
= Low false positive

Company Logo



Shellcode Detector

Static Shellcode Detector

Divided into 3 phases:

* Indication of Possible Shellcode (GetPC ...
etc)

= Filter by invalid or privileged Instructions
= Filter by Flow Analysis

Company Logo



Indication of Possible Shellcode

Search for Loops

+ 73 OF jnb short firefox.001F1548
+8B0¢ mov eax,dword ptr [esi]
85C0 test eax,eax
+| 74 02 je short firefox.001F1541
m J t FFDO call eax
ump 1O previous a3ce 04 add esi, 4
3BF7 cmp esi,edi
~l7z F1 ib short firefox.001F1333
SF pop edi
SE peop esi
2 retn

. mov eax, 55
= Call to previous (Call Delta) = =exees
pop ecx
adc edx,wireshar.005¢c84¢ce
lea eax,dword ptr [ecx+100]
push ezax
retn
cell wireshar. 00510452
nop

= Loop Instruction

Company Logo



Indication of Possible Shellcode

High rate of pushes end with flow
redirection

push eax
push 5e33¢e56e5
push edx
call esp

Search for fstenv followed with at least
5 valid instructions after it

mov edx,esp

fecmovnu st,st(3)

fstenv (28-byte) ptr [edx-C]
pop ecx

dec ecx

dec ecx

dec ecx

dec ecx

dec ecx

Company Logo



Skip Invalid Instructions

We skip all invalid instructions.

We skip all privileged instructions like:
IN, OUT, INT, INTO, IRETD, WAIT,
LOCK, HLT .. etc

Skip Instructions with unknown

Behavior like:

Jp, AAM, AAD, AAA, DAA, SALC, XLAT, SAHF,
LAHF, LES, DES,

Company Logo



Flow Analysis

Check on ESP Modifications through
loops
= |f there’s many pushes with no pops in loops

Check on Compares and Jccs in th
code

= Search for Jcc without compare or similar
before it.

Check on % of Nulls and Null-Free

Company Logo



Shellcode Statistics

File Type Total No of Pages Infected Pages Presentage
Pcap 381 40 2%
Pcap 11120 543 4%
Wmv 104444 4463 4%

“*Scan per page

“+False Positives in range 4% Infected
Pages

“+All of these samples are legitimate

Company Logo



Shellcode Statistics

It detects all Metasploit Shellcodes

Detects all working shellcodes in
Shellstorm (win32 — ASLR Bypass)

Detected Encoded Shellcodes by
metasploit Encoders

Manual Evasion is possible

Company Logo



What’s ROP Chain

= CPU - m;:n tﬁread, module testshel
Ve ry S m a I I COd e I n a qu_n ti_u S8 RDD AL,S8

RETN
NOP

legitimate dIl

NOP
L

End with “ret” instruction
Attackers uses a series ...
Of it Seq. A

Seq. B

Call Frame

All of them together=a [
working shellcode

Used to bypass DEP

Exploit Frame

Nl s | W N

NN

ol

w|lw .
X

V] .

S

ol

u|wn

b |

oo

b |

K p)

Company Logo




ROP Chain Detection

It’s a very simple ROP Detection

Search for Return with these criteria:

= the address is inside an executable page in a
module

= the return address not following a call

* Followed by ret or equivalent instructions in
the next 16 bytes

= Not Following series of (0xCC)

Company Logo



Stack Mitigations

We detect ROP Attacks

The Mitigation is named “Wrong
Module Switching”

We detect SEH Overwrite

We scan for Leaked ROP chains (which
not overwritten)

Company Logo



ROP Attack Vector

ROP are used to bypass DEP
They mostly ret to VirtualProtect API

Make the shellcode’s memory
executable

Or calls to another windows APIs

Company Logo



Wrong Module Switching

Detect ROP Attacks
Based on Stack Back-tracing

1. Hooking Here

User Modules APl > Kernel Modules Kernel Mode

3.Check on the call

N

2 .Stack Backtracing

Company Logo



Wrong Module Switching

Hooks in Kernel-Mode on win32
Uses SSDT Hooking
Hooking on WOWG64 for win64

Hook Specific APls

Hooks:
= VirtualProtect and similar functions

= CreateProcess and similar
= Network and Socket APIs
= And more

Company Logo



Wrong Module Switching

Using Stack Backtracing to Return to The API
Caller

Checks the API Call are:

Check The Call to this API or not
Check The Parameters

Check the next Call Stack if it calls to the function that
calls to the API

Check The SEH if it's in the same module
Check if there’s null parameters

Near return address after the call

And more

Gives a score to API call

Company Logo



Wrong Module Switching

Check on Different Calls like:
" Call dword ptr [<kernel32.API>]

" Tea eax, <kernel32.API>
call eax

= Call API
API:Jmp dword ptr [<kernel32.API>]

Company Logo



Wrong Module Switching

Category Parameters based on:

" CONST: push xxxxxxxxh
OR lea eax, [xxxxxxxh]
push eax

" STACK: lea eax, [ebp +/- xxxxh]
push eax

= REGISTER: push exx
= UNKNOWN: push any

Company Logo



Wrong Module Switching

Demo on ShellExecute

Company Logo



Demo: Hookln Firefox W|th EDS

] CamStudio - " Z
e Region O T Effects View

- rge.net/ G- Google 2

HE=Eha o |

- . . '
" j CamStudio™ teWeasel for Windows
: RECORDER ‘
Start recording : 20130725_1910_30 l
Lim{~ . . ‘ @' ]l
Cul Command Prompt - EDSMonitor.exe 53028 = | - oK - —Ta =
Cur
aeliFinal Score:
il>19 msecs
T“ Data Finished
b# API Called: 0000O2B8 Sunday
SilPostModification

Press

%‘

D:\Personal\C\SRDF\wWinSRDF\User-Hode\Release>EDSHonitor .exe 53028
Hooking

Process Id: 53028

IPC Created Successfully
DLL Injected

7210 PM

7/25/2013




Demo: Force Firefox to create

) CamStudio e e .= X
File Region Options Tools Effects View
Help rge.net/ [Gl-| Gooc P
Il =n#&a |
] CamStudio™ IteWeasel for Windows
’ RECORDER |
Start recording : 20130725_1310_30
Lim ) [=l S22 1
Cut Command Prompt - EDSMonitor.exe 53028 % Downloads ‘ — =
L R L L L L - ?
At
Tim| m
Nur
BellAPI Called: 000002BS WD Apps Setup(3).exe Sunday
Ml ostModification 4.0 MB — local file
Press

D:\Personal\C\SRDF\wWinSRDF\User-HMode\Release>E
Process Id: 53028

IPC Created Successfully
DLL Injected

‘ Clear List ‘

710PM ||

7/25/2013
Company Logo



Demo: The call stack to

. a
J ]CamStudio - - ]M' g

Filg|| File Region Options Tools Effects

ep rge.net/ - [Gl+| Google ye

TH IR=ECE s |

™ CamStudio”

RECORDER

Start recording : 20130725_1910_30

reWeasel for Windows

Limd™ N

g;‘ E::: ¥ Command Prompt - EDSMonitor.exe 53028 ‘ﬂ‘&] — & X4
Cun
ﬂ# : DO3TEBCO

Dl ™ : TSBE6BTSA PathResolue
MNu

val % . BO3TEGDY Sunday
Oin : TS6F1EE2 ShellExecuteExlW

Pre§§
“— : BO3TEBEC
7S6F1ETO ShellExecuteExW

OO3TETHO
7S6E3CDO ShellExecutell 3

Found Caller: 5862B80C
Next CallStack: OGO3TETAC

Found: 5862B80A call ebx

The Parameters
L

710PM ||
7/25/2013

Company Logo



Demo: The ShellExecute Params

]CamStudlo - _— J »

Effects View
elp rge.net/ - [Gl-| Google -
il =na |

™ CamStudio”

RECORDER

Start recording : 20130725_1910_30
Cu Lingl = | (O] |- )
Bl Cuf =H Command Prompt ‘ ‘ ‘ l =B X
BUEFound Caller: 5862B80C
S lNext CallStack: OO3TETAC ‘

ceWeasel for Windows

D Tim|
gm Found: 5862B80A call ebx

Yo E¢ The Parameters o
iy

[Press
“— : 7S6E3C59 ShellExecutell

CONST Ualue: 00000000 Actual Value: 00000000
CONST Ualue: 00000000 Actual Value: 00000000

REGISTER Reg: 00000000 Actual Ualue: 0385C638
CONST Ualue: 00000000 Actual Ualue: 00000000
CONST Ualue: 00000000 Actual Ualue: 00000000
CONST Ualue: 00000001 Actual Ualue: 00000001
REGISTER Reg: 00000007 Actual Ualue: OTCTE4HCO
REGISTER Reg: 00000006 Actual Ualue: OO3TEAOS
REGISTER Reg: 00000003 Actual Ualue: 80000000

711 PM
7/25/2013



] CamStudio

Demo: The Action Scoring

rie

elp

REQ

SO X g

il =na

rge.net/

Start recording : 20130725_1910_30

™ CamStudio”

RECORDER

reWeasel for Windows

Cour
Cun
Ach
Tirr
MNu
Codg
D

Pre§§
—_——

B o
Limi

¥ Command Prompt

Stage 3 Scanning
Nothing Found

No ROP Chain Found
Scoring System:

a Return Address: Yes

invalid constant variables: No
main constant variables: No
Next Call Stack: No

Next SEH in the caller module:

a near ret instruction after the call:

NULL parameter values: Yes
The Main Parameter is in the Stack: No
There's Shellcode: No
There's ROP Chain: No

Sunday

711PM ||
7/25/2013

Company Logo



Demo: a Vulnerable application

(Global Scope) ~ @ PreparingTheBuffer()
1 =#include <iostream>

2 | #include <windows.h>

3 | #include <shellapi.h>

4 using namespace std;

5

6  int VulnerableApp(char* Arg,char* x,char* y,char* z,int 1);
7

co

static unsigned long table[56] = {

O Ox44444444, OxA4AA4444, OxALAALAAL, OxAMAAAAAL, OxAAAAAAAL, OxAAAAAAAA, OxAAAAAAAL, OxAAA4A444.

10 OxA4444444, OxAAAAAAAL, OxAAAAAAAA, OXAAMAAAAL, OxAAAAAAAL, OxAAAAAAAL, OxA4AAAAAL, OxAAAA4A44,

11 Ox44444444, Ox4A4444444, OxAAAAAAA4, OxAAMAAAAL, OxAAAAAAAL, OxAAAAAAAL, OxA4AAAAA4, OxA44A4444,

12 Ox44444444, OxA4A44444, OxAAAAAAAL, OxAAAAAAAL, OxAAAAAAAL | OxAAAAAAAL, OxAAAAAAAA, OxAAAAAAAA,

13 OxA4444444, OxAAAAA444, OxAAAAA444, OxAAMAAAAL, OxAAAAAAAL, OxAAAAAAAL, OXxAAAAAAAL, OXxAAAA4A44,

14 OxA4444444, OxAAAAA4A4, OxAAAAAAAA, OXAAMAAAAL, OxAAAAAAAL, OxAAAAAAAL, OxA4AAAAAL, OxAAAA4A44,

15  Ox44444444, Ox44444444, OxA4444444, OxTEASOTEA, OxA4444444, O, O, OxA4444444) ; //Address of ShellExecuteA

16

17 —Noid PreparingTheBuffer()

18 | {

19 DWORD Address = (DWORD)GetProcAddress(LoadLibrary("shell32.d11"),"ShellExecuteA");
20 //cout << (int*)Address << "\n";

21 table[51] = Address;

22 |}

24 =int main (int argc, char *argv[])

25 | {

26 PreparingTheBuffer();

27 VulnerableApp((char*)table,0,0,"cmd.exe",0);
28 return 9;

29 |}

0

1
32 =int VulnerableApp(char* Arg,char* x,char* y,char* z,int 1)

{
34 char buf[200];
35 MessageBox(0, "Vulnerable App","This Msg is form The Vulnerable App",0);
36 if (Arg != NULL)strncpy(buf,Arg,208);

37 return 0; o]

100 0L -



Demo: Runnln and Hookln |t

5 ] CamStudio
Eilg | File Reqion

Help rge.net/ - [Gl+| Google b

3 il =& |

] CamStudio”

RECORDER

Start recording : 20130725_1910_30

Cul Lingi s . @
Brlil  Cu Command Prompt - EDSMonitor.exe ‘ = S _ ® x

Cu
Act

D ‘ Tim|

M

—

teWeasel for Windows

Cod Sunda\)f
Drireg

Press Vulnerable App

-_—

711 PM
7/25/2013

Company Logo



Demo: The Action Scoring and

Detection

J 7 CamStudio e o L= | X g

rge.net/ - [Gl+| Google P

T ICL L |

j CamStudio™ |~:eW’easel for Windows

RECORDER

Start recording : 20130725_1910_30

Lim{~ )
}(;: E.u: Command Prompt - EDSMonitor.exe ‘ﬂ‘ﬁ _ = =
| EUlNext CallStack: 444ihiyhy

Ach

DJ| lilStage 1 Scanning ... ‘

MNuf

E# Stage 2 Scanning ... Sy
)iy

’Bﬁ§§ Stage 3 Scanning ...
mammliNothing Found
No ROP Chain Found

i System:

a Return Address: No!!
Shellcode: No
ROP Chain: No

711PM | |
7/25/2013

Company Logo



SEH Mitigation

SEH is a linked list of pointers to
functions handle an error

Very basic Mitigation

Saves the SEH Linked List
Check if it ends differently

Company Logo



Mitigations For Heap

We mitigate these attack vectors:

eap Overflow
eap Spray
eap Use After Free

Hooks GlobalAlloc and jemalloc

Create a new Header for memory
allocations

Company Logo



New Header Design
It’s Divided Into 2 Headers

The Buffer Header

Magic (2 bytes)

Nulls (2 bytes) Array of Memory
Allocation Information

Cookie (2 bytes)

Allocation Information

Index (2 bytes)

Allocation Information

Allocation Information

Memory Buffer Allocation Information

Allocation Information

Company Logo



Design of Buffer Header

This is a Header in a separate Buffer

It points to the buffer Header Information
BOOL IsFreed;
It get the Caller Module 5001 Isimproant
. . WORD Cookie;
and the allocation Time char* AllocatedBuffer;
DWORD Size;
- . DWORD AllocatorEip;
It checks for vtable inside| oy oro atccatedtime
the buffer and Mark it Sikasatbla

as Important
It reset everything in ~ 2 secs

Company Logo



Overflow Mitigation

It checks for:
= Nulls: to stop the string overwrite
= Cookie: to stop managed overwrite

It’s used mainly against jemalloc

Company Logo



HeapSpray Mitigation

It searches for Allocations:

= Many Allocations from the same Module
= Large Memory Usage

= In very small time

Take 2 random buffers
Scan for shellcode and ROP chains

Company Logo



Use-After-Free Mitigation

Scans for vtable inside buffers
Delay the free for these buffers
Wipe them with 0xBB

Free them at the end of the slot ~ 2
secs

Detect Attacks when access 0xBB in
Heap

Company Logo



Put All together

It does 2 type of scanning:

= Critical Scanning: when calls to an API to
check ROP Attack or detect HeapSpray .. etc

= Periodical Scanning: That's the monitoring
system

Company Logo



Scoring System

It’s based on the Mitigation

It stop the known Attacks and
terminate the Process

Alert for suspicious Inputs
Take Dump of the Process

Company Logo



Monitoring System

It scans Periodically
Checks for possible Attacks
Like:

= C
= C
Fi

neck Executable Places in Stack
neck Executable Places in Memory Mapped

es

= Search for ROP Chains and Shellcode in
Stack and Heap

= Check Threads running in place outside
memory

= And many more

Company Logo



We are planning to create a central
Server

Receives Alerts and warning

Monitoring Exploitations on
client machine
With a graphical
Dashboard

Company Logo



Future Work: Dashboard

The Dashboard includes Suspicious
Processes in all Machines

Includes the files loaded inside the
suspicious processes (PDF, DOC ...

etc)

Includes IPs of these processes
connect to (after review the Privacy

policy)

Company Logo



Future Work: Dashboard

EDS will become your Memory and
Exploitation Monitor.

Will correlate with your network tools
Will be your defense inside the client
More Intelligent than Antivirus

Better Response

Company Logo



Dashboard: What you can Detect

Using this Dashboard you can detect:
= Suspicious PDF or Word File many people
opened it:
it could be an email sent to many people in
the company

Company Logo



Dashboard: What you can Detect

Using this Dashboard you can detect:

* In small time ... IE for many employees
become suspicious with similar shellcode:

could be a suspicious URL visited by a
phishing mail

Company Logo



Dashboard: What you can Detect

Using this Dashboard you can detect:

= You can detect suspicious IPs did a scanning
over your network and now suspicious
processes connect to it

Company Logo



Development

The EDS is based on SRDF

“Security Research and Development
Framework”

Created by Amr Thabet
Includes 3 main contributors

Company Logo



development framework
Support writing security tools
Anti-Malware and Network Tools
Mainly in windows and C++

Now creating linux SRDF and
implementation on python

Company Logo



SRDF Features

Parsers:

= PE and ELF Parsers

= PDF Parser

= Andoid (APK or/and DEX) Parser

Static Analysis:

* |nclude wildcard like YARA

= Xx86 Assembler and Disassembler
= Android Delivk Java Disassembler

Company Logo



SRDF Features

Dynamic Analysis:
= Full Process Analyzer
= Win32 Debugger

= x86 Emulator for apps and shellcodes
Behavior Analysis:

= APl Hooker

= SSDT Hooker (for win32)

= And others

Company Logo



SRDF Features

Network Analysis

= Packet Capturing using WinPcap

= Pcap File Analyzer

= Flow Analysis and Session Separation

= Protocol Analysis: tcp, udp, icmp and arp
= App Layer Analysis: http and dns

= Very Object Oriented design

= Very scalable

Company Logo



Very growing community

| will present it in 82,59_.12

Become a part of this growing
community

Company Logo



Reach it at:
= Website:
= Source:

= Twitter: @wIinSRDF

Join us

Company Logo



What we reach in EDS

We developed the Mitigations
separately

We tested the Shellcode Scanner on
real shellcodes

Still testing on real world scenarios
Join us and help us.

Company Logo



Still there’s no website for EDS
You can reach us at SRDF Website:

And my Twitter: @Amr_Thabet

Just mail me if you have any feedback
= Amr.thabet[@#!**lowasp.org

Company Logo



Conclusion

EDS is the new security tool for this
Era

The Last line to defend against APT
Attacks

Still we are in the middle of the
Development
SRDF is the main backbone for it

Join Us

Company Logo



Big Thanks to

Jonas Lekyygaurd
Anwar Mohamed
Corlan Team

All Defcon Team
Big thanks for YOU

Company Logo



{ o=
T SS
v =
¥ (©
N S




