
by Anton Dorfman 
 HITB 2014, Amsterdam 



}  Fan of & Fun with Assembly language 
}  Researcher 
}  Scientist 
}  Teach Reverse Engineering since 2001 
}  Candidate of technical science 
}  Lecturer at Samara State Technical University 

and Samara State Aerospace University 



}  There is the rule RTFM (Read The F**king 
Manual) 

}  Nobody likes it 
}  I’m not exception 

}  First of all I start my research, and second – 
try to find related works and analyze them 

}  After this I generalize ideas from them  
}  Now  I do my best to put all these ideas into 

the project 





















}  File formats – multimedia formats, database 
formats, internal formats for exchanging 
between program components and etc. 

}  Protocols – network protocols, hardware 
device interaction protocols, protocols of 
interaction between driver and user space 
application and etc.  

}  Structures in memory – OS structures, 
application structures and etc. 



}  Reverse engineering any program 
}  Reverse engineering undocumented/proprietary file 

formats, network protocols, structures in memory 
}  Fuzzing  
}  Memory forensics 
}  Examination of protocol implementation 
}  Vulnerability discovery 
}  Exploit generation 
}  Kernel rootkit detection 
}  Malware classification 
}  OS kernel fingerprinting 
}  Replay network interaction 
}  Zero-day vulnerability signature generation 



}  Hex editor 
}  Researcher 
}  Brain (equally important as a hex editor) 
}  Basic knowledge how data can be organized (in brain) 
}  Analysis of the executable file that manipulates with 

data format 

}  But this way is a hard and challenging task and 
existing manual approaches tend to be time-
consuming, tedious, boring and error-prone. As an 
example, after numerous trials and errors, it took 12  
years for the open-source Samba project to reverse 
engineer the Microsoft SMB protocol! 





}  Protocol Informatics Project – “Network Protocol Analysis using 
Bioinformatics Algorithms” by Marshall A. Beddoe, 2004 

}  NoName – “Extracting Output Formats from Executables” by J. Lim, T. 
Reps, B. Liblit, 2006 

}  Discoverer -  “Discoverer: Automatic Protocol Reverse Engineering from 
Network Traces” by Weidong Cui, Jayanthkumar Kannan, Helen J. Wang, 
2007 

}  Laika – “Digging For Data Structures” by  Anthony Cozzie, Frank Stratton, 
Hui Xue, and Samuel T. King, 2008 

}  Tupni – “Tupni: Automatic Reverse Engineering of Input Formats” by 
Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, Luiz Irun-Briz, 
2008 

}  AutoFormat – “Automatic Protocol Format Reverse Engineering through 
Context-Aware Monitored Execution” by Zhiqiang Lin, Xuxian Jiang, 
Dongyan Xu, Xiangyu Zhang, 2008 

}  REWARDS – “Automatic Reverse Engineering of Data Structures from 
Binary Execution” by Zhiqiang Lin, Xiangyu Zhang, Dongyan Xu, 2010 

}  Howard – “Howard: a dynamic excavator for reverse engineering data 
structures” by Asia Slowinska, Traian Stancescu, Herbert Bos, 2011 



}  Static RE analysis – analyze in static, just using 
binary file how applications parse and handle 
data format: NoName 

}  Dynamic RE analysis – analyze in dynamic how 
applications parse and handle data format to 
understand it often uses dynamic taint analysis 
and dynamic binary instrumentation: Tupni, 
AutoFormat, REWARDS , Howard  

}  Statistic analysis – try to extract header, 
structures, fields and try to find relationship 
between data based on some amount of samples 
and use statistics of changes and ranges of 
values: Protocol Informatics Project, Discoverer, 
Laika  



}  Uses global and local sequence alignment - 
Needleman Wunsch and Smith Waterman 
algorithms – with sources 



}  A tool for automatically reverse engineering 
the protocol message formats of an 
application from its network trace 

}  A key property of Discoverer is that it 
operates in a protocol-independent fashion 
by inferring protocol idioms commonly seen 
in message formats of many application-level 
protocols. 

}  Tested on 1 text protocol - HTTP and 2 
binary protocols RPC and CIFS/SMB 





}  Detects stuctures in memory  using Bayesian 
unsupervised learning 

}  For fixed size structures only 
}  2 key features: identifying the positions and sizes 

of objects, and determining which objects are 
similar based on their byte values. 

}  Laika identify object positions and sizes by using 
potential pointers in the image to estimate object 
positions and sizes.  

}  The basic block types are address (points into 
heap/stack), zero, string, and data (everything 
else) 





}  Based on taint tracking engine 
}  Tested on WMF, BMP, JPG, PNG, TIF, DNS, 

RPC, TFTP, HTTP, FTP 



}  Application field: 2 text-based HTTP SIP, 3 
binary-based DHCP, RIP, OSPF, hybrid (mixed) 
CIFS/SMB and unknown used by malware 
structure of the protocol format by revealing 
possible relations (e.g., sequential, parallel, 
and hierarchical) among the message fields 

}  By monitoring the program execution, it 
collect the execution context information for 
every message byte (annotated with its offset 
in the entire message) and cluster them to 
derive the protocol format 







}  All programs use data formats 
}  Data formats are developed by human (not pets 

or aliens) 
}  Sometimes looks like that no human works on 

it… 
}  Data formats are abstractions of implementation 

details 
}  Format developers use common data 

organization concepts and similar thoughts when 
creating new data formats 

}  If we find regularities in data format organization 
rules we can automate searching of them 



}  Data – information for representing which 
Data Format is developed 

}  MetaData – some structure for describing 
Data Format 

}  Field – some value used to describe Data 
Format 

}  Structure – way for organizing various fields 
}  Header - most common type of MetaData - 

structure before data, may contain 
substructures with fields 



}  Data Format analysis – generate specification 
}  Format specification checking – the difference 

between specification and realisation 
}  Memory dump reconstruction – find various 

data format structures in memory and links 
between them 



}  Extract header, separate it from data 
}  Find field boundaries 
}  Find value ranges of fields 
}  Find structures and substructures 
}  Find types of fields 
}  Detect bit and byte ordering 
}  Determine semantics of fields 



}  Bit Order 
}  Byte Order 
}  Fields Size 
}  Field Basic Type 
}  Field Type 
}  Structure 
}  Field Semantics 



}  Service fields – for describing Data Format 
(size of structure and etc.) 

}  Common fields – “fields from life” (time, date 
and etc.) 

}  Specific fields – we can find range for that 
type (bit flags and etc.) 



}  Commonly field is a byte sequence 
}  Sometimes field is a bit sequence 

}  Fixed size in bytes (1, 2, 3, 4, …) 
}  Fixed size in bits (1, 2, 3, 4, …) 
}  Variable size in bytes 
}  Variable size in bits 



}  Hex value – by default 
}  Decimal value 
}  Character value (up to 4 symbols) 
}  String (ASCII or Unicode)  
}  Float value 



}  Usually fixed size, remaining space after text 
filled with 0 

}  Variable sized text ended with 0, or there are 
size of this text field 

}  Usually text string contain their meanings 



}  ID 
}  Offset 
}  Size 
}  Quantity 
}  Flag 
}  Counter 



}  Common: 
}  Identifier of data format, аlso known as «magic number» 

}  Properties: 
}  Every copy of data format structure contains the same ID value 
}  Field size – can be  n bytes 
}  Usually ID of data format – first n bytes of instance 
}  Often Consist of char symbols – “PE” 
}  Often Looks like “magic” in hex - BE BA FE CA 

}  Subtypes: 
}  ID of data format – exist in all instances of that data format 
}  ID of structure – exist in all instances of that data structure 



}  Notepad.exe    Frodo.exe 



}  Properties: 
}  Offset pointed inside instance of data format 
}  Offset pointed inside concerned block 
}  Depends on it can be absolute or relative 
}  Field size – depends on architecture – 2, 4, 8 and etc 

bytes 

}  Subtypes: 
}  Offset to data 
}  Offset to another field 
}  Offset to another structure 
}  Offset to the instance of the same structure (next or 

previous in linked list) 



}  Notepad.exe    Frodo.exe 



}  Common: 
}  Size of metadata or data in data format 

}  Properties: 
}  Can’t be more then concerned block 
}  Measured in bytes 

}  Subtypes: 
}  Size of data 
}  Size of metadata 
}  Size of structure 
}  Size of field 



}  Notepad.exe    Frodo.exe 



}  Properties: 
}  Quantity of structures of some type in data 

format 
}  Quantity can be concerned as size of same type 

elements array 
}  Elements size – more then 1 byte - word (2 byte), 

double word, paragraph (16 byte) and etc. 
}  Quantity multiplied by the size can’t be more 

then concerned block 

}  Subtypes: 
}  Quantity of same type structures 
}  Quantity of same type fields 



}  Notepad.exe    Frodo.exe 



}  Properties: 
}  Usually this field – combination of bit values 
}  Data range of this field nave limited values 

}  Subtypes: 
}  Bit Flag 
}  Enum value flag 
}  Bool value flag 



}  Notepad.exe    Frodo.exe 
 



}  Properties: 
}  Sequence number of the packet in the protocol 

communication, or sequence number of the frame in 
multimedia format 

}  Usually counter is incremented by 1 

}  Subtypes: 
}  Incremented counter 
}  Decremented counter  
}  Starts with 0 
}  Begins with another value 
}  Changes by 1  
}  Changes by another value  



}  Time 
}  Date 
}  Protect 

}  Etc. 



}  Storing format 
}  Resolution 
}  Moment of beginning 
}  Range 



}  Notepad.exe    Frodo.exe 



}  CRC value of whole block 
}  CRC value of data 
}  CRC value of metadata 
}  CRC value of structure 
}  Various Hash functions and etc. 



}  Notepad.exe    Frodo.exe 



}  Range checking 
}  Value substraction 
}  Hamming distance 
}  Entropy of blocks checking 
}  Some heuristics 



}  Written in Assembler x86 
}  Executable file size – 35840 bytes – many 

internal  
}  Fast and furious! 
}  Testing is on its active phase now 



}  dorfmananton@gmail.com 


